FedMix: A Simple and Communication-Efficient Alternative
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A New Formulation of Federated Learning

o Cross-silo Federated Learning (FL) is typically formulated as the
optimization problem

min | f(z) = =3 fila)|. (ERM)

rERA

where ¢ = 1,2, ..., n are the clients/silos, and f; is the loss
defined by the data owned by client 7.

® We propose a new formulation of FL, which we call FedMix:

- 1M
r* =argmin | f(z) = - Z filajxr + (1 — «a;)x;)
=1
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(FedMix)

e 1; = argmin f;(x) is the pure model trained entirely on data owned by
device 1.

®ay,...,q, € [0, 1] are explicit personalization parameters.

e At node ¢ we deploy the personalized model

Ti(z) = ax™ + (1 — ay)x;.
o Key properties of FedMix:

e Fifficiently solvable as a finite-sum problem
e Adaptive to communication constraints
e Adaptive to personalization

Motivation 1: From Local GD to FedMix

o Local GD (LGD) is a simple form of Federated Averaging for
solving (ERM), used in the hope that its local steps address the
communication bottleneck.

e [Local GD:
)

Ty = < %Z [3735 _ ’ny@@?%)} if t mod H=0"
\ =1

where H > 1 is the number of local steps.
e However, LGD does not improve on GD in terms of communication
complexity when solving ERM |2, 1] with heterogeneous datal
@ In light of this, Hanzely and Richtarik |2] recently proposed the

implicitly personalized FL formulation
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1111 fA(yla Yo, .- 7yn) — EZ fz(yz) + %Hyz — yH2 ) (IPFL)
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where 7 = %2?21 y; and A > 0 is a regularization parameter.

e As the A varies between 0 and oo, the solutions of (IPFL) interpolate
between the pure local optimal models (i.e., x; = argmin f;(z)) and the
minimizer of (ERM) The solutions vy, ..., y, found by Local GD are an
implicit mixture of the local minimizers xq, ..., x, and the solution of
(ERM) argmin f(z).

e Key observation: When applying SGD to (IPFL), seen as a 2-sum
problem, one recovers a (variant) of LGD.

o Key result of [2]: However, when LGD is seen as a method for solving
(IPFL) as opposed to (ERM), its communication complexity improves
even in the heterogeneous case, and diminishes to 0 as A — 0. So, with
increased personalization (= smaller A), they get better communication
complexity, resolving an important issue in FL.

© Motivation 1. Can we design a different formulation of FL, one in
which we would have the same benefits, but where local steps
would not be needed? FedMix is the answer!
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Motivation 2: from MAML to FedMix

©® Model Agnostic Meta Learning (MAML) objective is

1 n
min — (x — YV /filx)). 1
min S fie V(@) 1)
@ Key observation: Suppose that we run GD for H > 1 steps on
the quadratic objective f;(x) = %xTAZ-x — blx + ¢, starting from
some z” € R?. If the stepsize satisfies v < %, where

L; = Amax(A;), then the final iterate x¥ can be written as

rH = (I — JZ-H) T :L Ja0,

where x; = argmin f; and J; € R™? is a matrix with maximum

eigenvalue smaller than 1, i.e. A (J) < 1.

e Plugging this result into Equation (1), observe that in MAML we find the
initial model 2" by solving the problem

n

min— 57 f((T = J)a: + J).
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e Hence, MAML is optimizing or a specific weighted average of the initial
model 2¥ and the local solutions z1, x9, . . . , Tn.
© Motivation 2: FedMix can be can be seen as dispensing with the
specific matrix J;, and instead optimizing the average weighted
with an arbitrary constant «; € [0, 1].

Theoretical Properties of FedMix

e FedMix preserves smoothness and convexity. In particular,
suppose that each objective f; is L;-smooth, i.e.,

IV filz) =V iyl < Lillz—yl
for all ,y € R?. Then for the FedMix objective f, we have
(i) f is Lo-smooth with L, e %Z?Zl oz L
(i) If each f; is convex, then f is also convex
(ii1) If each f; is p-strongly convex, then f is p,-strongly convex with

def 1 n 2
Ha = 5 D ioy QiMi
e FedMix regularizes model variance. Let Ti(x), To(x), ..., Ty(x) be
the deployed personalized models. For v, ..., vy, € R? define

n

def 12
V(yla'“ayn) = ﬁZHyz_yH )
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where y = %Zi y;. Then,
V(Ti(z), To(x),....,Th(z)) = (1= B V(zy, 2o, ..., Tn),
if we assume that 8 := a1 =ay = ... = «,. S0, the variance of
the deployed models is smaller if 3 is smaller.

e FedMix enjoys a one-shot learning property. Suppose that each

objective f; is L;,-smooth, and let L« %2?21 L;. Given the pure
local models x1, x9, . .., x,, define the weighted average
n 21 n
pive 21 Wi, w; 2 fbe[;, Lo ; 21 L. (2)
1= 1=

We turther define the constants

DE  max & -, and VE S willz — 2% (3)
i j=1,...,n,i%] —
Fix any € > 0. Assume that either max;—; _, a; < \/276/\/ fLD,
or a; = 3 for all i and 8 < v/2¢/V LD. Then ¢ is an

e-approximate minimizer of (FedMix).
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Distributed GD Applied to FedMix

Distributed GD applied to FedMix:
k1 k7 - £ ok )
T =t ; o;V f; (ozzm + (1 — o) 5132) . (DGD)

Suppose that each f; in (FedMix) is L;-smooth and p;-strongly con-

vex. Define 8. L, and L by (2) and V, D by (3). Suppose that

we run DGD for K iterations starting from z' = z®™8. Then the

following hold:

) If the a; are allowed to be arbitrary, then for

def
Qmax = MaX;—1. n & We have

; .7 o\ oz?naxf)D
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i) If a; = B for all 7, then

f(a*) — min f(x) <

rERA
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~ def 1 «—n
where fi = > iy fhi.

Performance of Compressed Gradient
Methods on FedMix

Theoretical performance of Distributed Compressed Gradient De-
scent (DCGD) and the DIANA method of Mishchenko et al |4] in
different settings on FedMix. Note that in all cases, complexity im-
proves as « decreases.

Convergence guarantee
Ellz* — 2] < (1 —3m)"C1 + Cs
E[f(z*) — f1] < (1 = 90p)"Cy + )0’
Ellz* —2*|* < (1 - p)*C
E[f(a") — f] < (1 - p)*Ca’
DCGD | smoothness, cvx E[f(z") — f(z*)] < :C1a” + Cohar
DIANA | smoothness, cvx | E[f(z") — f(2*)] < 1(Cia” + Cha)
2\ F
DCGD smoothness min  E[|Vf(z!)|]?> < <1+Cw]§) @ a2
0<t<k-1 0
DIANA smoothness E[|Vf(2)]]? < %o’

Table: Abbreviations: cvx = convex, scvx = strongly convex. All the constants are
independent of «.

Algorithm | Assumption

DCGD | smoothness, scvx

DIANA | smoothness, scvx

(Generalization of Sine Functions

Following [4], we consider MSE loss on functions

fz(.l’) = Q; Siﬂ(.ﬁL’ -+ bz)
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Figure: Average MSE over clients as a function of the personalization parameter «.
In all cases, 0 < v < 1 is optimal; that is, it is optimal to use a mixture, and not
to rely on either the maximally personalized models z; = arg min f; (this
corresponds to v = 0), or on the single global model x* = argmin f (this
corresponds to a = 1).

Generalization on Real Clients’ Data

To test the generalization of FedMix on real data we adopt Stack-
overflow dataset |3|, and compare its performance with two baselines,

FOMAML and Reptile.
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Figure: Test accuracy of our FedMix model for different personalization
parameter values, versus FOMAML and Reptile. We choose a; = « for all 7, (see
horizontal axis). FOMAML and Reptile are independent from the personalization
parameter «. Plots correspond to different data splittings.

Optimization Experiments

We consider FedMix with

ki
filz) = ’“l]z::l [log (14 exp (—azjx))} + 2|z

mushrooms, o = 1.0 mushrooms, = 0.1 mushrooms, o = 0.01 mushrooms, a = 0.001
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Figure: Loss f(x) — f* vs. communication cost in unit of thousands of float
numbers of DIANA and GD for logistic regression problem, [5 regularizer for four
datasets, k£ is the sparsification parameter of Random-%& compressor.
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