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A New Formulation of Federated Learning

1 Cross-silo Federated Learning (FL) is typically formulated as the
optimization problem

min
x∈Rd

[
f (x) = 1

n

n∑
i=1

fi(x)
]
, (ERM)

where i = 1, 2, . . . , n are the clients/silos, and fi is the loss
defined by the data owned by client i.

2 We propose a new formulation of FL, which we call FedMix:

x∗ = arg min
x∈Rd

[
f̃ (x) = 1

n

n∑
i=1

fi(αix + (1− αi)xi)
]
. (FedMix)

• xi = argmin fi(x) is the pure model trained entirely on data owned by
device i.
• α1, . . . , αn ∈ [0, 1] are explicit personalization parameters.
• At node i we deploy the personalized model

Ti(x) = αix
∗ + (1− αi)xi.

3 Key properties of FedMix:
• Efficiently solvable as a finite-sum problem
• Adaptive to communication constraints
• Adaptive to personalization

Motivation 1: From Local GD to FedMix

1 Local GD (LGD) is a simple form of Federated Averaging for
solving (ERM), used in the hope that its local steps address the
communication bottleneck.
• Local GD:

xit+1 =

x
i
t − γ∇fi(xit) if t mod H 6= 0

1
n

n∑
i=1

[
xit − γ∇fi(xit)

]
if t mod H = 0 ,

where H ≥ 1 is the number of local steps.
• However, LGD does not improve on GD in terms of communication
complexity when solving ERM [2, 1] with heterogeneous data!

2 In light of this, Hanzely and Richtárik [2] recently proposed the
implicitly personalized FL formulation

min
x∈Rd

[
fλ(y1, y2, . . . , yn) = 1

n

n∑
i=1

fi(yi) + λ

2n
‖yi − y‖2

]
, (IPFL)

where y = 1
n

∑n
i=1 yi and λ > 0 is a regularization parameter.

• As the λ varies between 0 and ∞, the solutions of (IPFL) interpolate
between the pure local optimal models (i.e., xi = argmin fi(x)) and the
minimizer of (ERM). The solutions y1, . . . , yn found by Local GD are an
implicit mixture of the local minimizers x1, . . . , xn and the solution of
(ERM) argmin f (x).
• Key observation: When applying SGD to (IPFL), seen as a 2-sum
problem, one recovers a (variant) of LGD.
• Key result of [2]: However, when LGD is seen as a method for solving
(IPFL) as opposed to (ERM), its communication complexity improves
even in the heterogeneous case, and diminishes to 0 as λ→ 0. So, with
increased personalization (= smaller λ), they get better communication
complexity, resolving an important issue in FL.

3 Motivation 1: Can we design a different formulation of FL, one in
which we would have the same benefits, but where local steps
would not be needed? FedMix is the answer!

Motivation 2: from MAML to FedMix

1 Model Agnostic Meta Learning (MAML) objective is

min
x∈Rd

1
n

n∑
i=1

fi(x− γ∇fi(x)). (1)

2 Key observation: Suppose that we run GD for H ≥ 1 steps on
the quadratic objective fi(x) = 1

2x
TAix− bTi x + c, starting from

some x0 ∈ Rd. If the stepsize satisfies γ ≤ 1
Li
, where

Li = λmax(Ai), then the final iterate xHi can be written as

xHi =
(
I − JH

i

)
xi + JH

i x
0,

where xi = arg min fi and Ji ∈ Rd×d is a matrix with maximum
eigenvalue smaller than 1, i.e. λmax(J) < 1.
• Plugging this result into Equation (1), observe that in MAML we find the
initial model x0 by solving the problem

min
x∈Rd

1
n

n∑
i=1

fi((I − Ji)xi + Jix).

• Hence, MAML is optimizing or a specific weighted average of the initial
model x0 and the local solutions x1, x2, . . . , xn.

3 Motivation 2: FedMix can be can be seen as dispensing with the
specific matrix Ji, and instead optimizing the average weighted
with an arbitrary constant αi ∈ [0, 1].

Theoretical Properties of FedMix

• FedMix preserves smoothness and convexity. In particular,
suppose that each objective fi is Li-smooth, i.e.,

‖∇fi(x)−∇fi(y)‖ ≤ Li ‖x− y‖
for all x, y ∈ Rd. Then for the FedMix objective f̃ , we have
(i) f̃ is Lα-smooth with Lα

def= 1
n

∑n
i=1 α

2
iLi

(ii) If each fi is convex, then f̃ is also convex
(iii) If each fi is µi-strongly convex, then f̃ is µα-strongly convex with

µα
def= 1

n

∑n
i=1 α

2
iµi

• FedMix regularizes model variance. Let T1(x), T2(x), . . . , Tn(x) be
the deployed personalized models. For y1, . . . , yn ∈ Rd define

V (y1, . . . , yn) def= 1
n

n∑
i=1
‖yi − ȳ‖2,

where ȳ = 1
n

∑
i yi. Then,

V (T1(x), T2(x), . . . , Tn(x)) = (1− β)2 V (x1, x2, . . . , xn),
if we assume that β := α1 = α2 = . . . = αn. So, the variance of
the deployed models is smaller if β is smaller.
• FedMix enjoys a one-shot learning property. Suppose that each
objective fi is Li-smooth, and let L̂ def= 1

n

∑n
i=1Li. Given the pure

local models x1, x2, . . . , xn, define the weighted average

xavg def=
n∑
i=1
wixi, wi

def= α2
iLi
nLα

, Lα
def= 1

n

n∑
i=1
α2
iLi. (2)

We further define the constants

D
def= max

i,j=1,...,n,i6=j
‖xi − xj‖ , and V

def=
n∑
i=1

wi‖xi − xavg‖2. (3)

Fix any ε > 0. Assume that either maxi=1,...,nαi ≤
√

2ε/
√
L̂D,

or αi = β for all i and β ≤
√

2ε/
√
L̂D. Then xavg is an

ε-approximate minimizer of (FedMix).

Distributed GD Applied to FedMix

Distributed GD applied to FedMix:

xk+1 = xk − γ

n

n∑
i=1

αi∇fi
(
αix

k + (1− αi)xi
)
. (DGD)

Suppose that each fi in (FedMix) is Li-smooth and µi-strongly con-
vex. Define xavg, Lα, and L̂ by (2) and V,D by (3). Suppose that
we run DGD for K iterations starting from x0 = xavg. Then the
following hold:
i) If the αi are allowed to be arbitrary, then for
αmax

def= maxi=1,...,nαi we have

f̃ (xk)− min
x∈Rd

f̃ (x) ≤
(

1− µα
Lα

)K α2
maxL̂D

2
.

ii) If αi = β for all i, then

f̃ (xk)− min
x∈Rd

f̃ (x) ≤
(

1− µ̂

L̂

)K β2L̂V

2
, (4)

where µ̂ def= 1
n

∑n
i=1 µi.

Performance of Compressed Gradient
Methods on FedMix

Theoretical performance of Distributed Compressed Gradient De-
scent (DCGD) and the DIANA method of Mishchenko et al [4] in
different settings on FedMix. Note that in all cases, complexity im-
proves as α decreases.

Algorithm Assumption Convergence guarantee

DCGD smoothness, scvx E‖xk − x∗‖2 ≤ (1− γ0µ)kC1 + C2
E[f̃ (xk)− f̃ ∗] ≤ ((1− γ0µ)kC1 + C2)α2

DIANA smoothness, scvx E‖xk − x∗‖2 ≤ (1− ρ)kC
E[f̃ (xk)− f̃ ∗] ≤ (1− ρ)kCα2

DCGD smoothness, cvx E[f̃ (xk)− f̃ (x∗)] ≤ 1
kC1α

2 + C2α

DIANA smoothness, cvx E[f̃ (xk)− f̃ (x∗)] ≤ 1
k(C1α

2 + C2α)

DCGD smoothness min
0≤t≤k−1

E‖∇f̃ (xt)‖2 ≤ (1+C1γ
2
0)k

C2

γ0k
α2

DIANA smoothness E‖∇f̃ (x̂)‖2 ≤ C
kα

2

Table: Abbreviations: cvx = convex, scvx = strongly convex. All the constants are
independent of α.

Generalization of Sine Functions

Following [4], we consider MSE loss on functions
fi(x) = ai sin(x + bi).
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Figure: Average MSE over clients as a function of the personalization parameter α.
In all cases, 0 < α < 1 is optimal; that is, it is optimal to use a mixture, and not
to rely on either the maximally personalized models xi = arg min fi (this
corresponds to α = 0), or on the single global model x∗ = arg min f (this
corresponds to α = 1).

Generalization on Real Clients’ Data

To test the generalization of FedMix on real data we adopt Stack-
overflow dataset [3], and compare its performance with two baselines,
FOMAML and Reptile.
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Figure: Test accuracy of our FedMix model for different personalization
parameter values, versus FOMAML and Reptile. We choose αi = α for all i, (see
horizontal axis). FOMAML and Reptile are independent from the personalization
parameter α. Plots correspond to different data splittings.

Optimization Experiments

We consider FedMix with

fi(x) := 1
ki

ki∑
j=1

[
log (1 + exp (−a>i,jx))

]
+ λ

2‖x‖
2.
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Figure: Loss f (x)− f ∗ vs. communication cost in unit of thousands of float
numbers of DIANA and GD for logistic regression problem, l2 regularizer for four
datasets, k is the sparsification parameter of Random-k compressor.
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