Stochastic Spectral Descent Methods

Dmitry Kovalev² Eduard Gorbunov² Elnur Gasanov² Peter Richtárik^{1,2,3}

 1 King Abdullah University of Science and Technology (KAUST), Kingdom of Saudi Arabia

²Moscow Institute of Physics and Technology (MIPT), Russia

³ University of Edinburgh, United Kingdom

1. Introduction

Consider the following optimization problem

$$\min_{x \in \mathbb{R}^n} f(x) := \frac{1}{2} x^\top \mathbf{A} x - b^\top x,$$

where **A** is an $n \times n$ symmetric positive definite matrix. The problem has a unique solution: $x_* = \mathbf{A}^{-1}b$. We are interested in the case when n is huge (millions, billions). Note that f is (strongly) convex and quadratic.

2. Algorithm: Stochastic Descent

The state-of-the-art methods for convex optimization in huge dimensions are randomized coordinate descent (RCD) methods. We now describe a method which includes RCD as a special case: stochastic descent (SD). SD is a special case of the **sketch-and-project** method developed in [1].

Algorithm 1 [1, 3] (Stochastic Descent).

Parameter: some distribution \mathcal{D} over vectors in \mathbb{R}^n

Initialization: Choose $x_0 \in \mathbb{R}^n$

 $for t = 0, 1, 2 \dots do$

 $Draw\ a\ fresh\ sample\ s_t\ from\ \mathcal{D}$

 $x_{t+1} \leftarrow x_t - \frac{s_t^{\top}(\mathbf{A}x_t - b)}{s_t^{\top}\mathbf{A}s_t}s_t$

end for

RCD is obtained as a special case by letting \mathcal{D} be a distribution over unit coordinate (i.e., basis) vectors in \mathbb{R}^n : $\{e_1, e_2, \cdots, e_n\}$:

$$s_t \sim \mathcal{D} \quad \Leftrightarrow \quad s_t = e_i \quad \text{with probability} \quad p_i > 0.$$

Theorem 1 [1, 3]. Algorithm 1 converges linearly in expectation as

$$(1 - \rho_{\max})^t ||x_0 - x_*||_{\mathbf{A}}^2 \le \mathbb{E}_{s \sim \mathcal{D}}[||x_t - x_*||_{\mathbf{A}}^2] \le (1 - \rho_{\min})^t ||x_0 - x_*||_{\mathbf{A}}^2,$$

where $\|x\|_{\mathbf{A}} = (x^{\mathsf{T}} \mathbf{A} x)^{1/2}$, $\mathbf{W} := \mathbb{E}_{s \sim \mathcal{D}} \left[\frac{\mathbf{A}^{1/2} s s^{\mathsf{T}} \mathbf{A}^{1/2}}{s^{\mathsf{T}} \mathbf{A} s} \right]$, $\rho_{\max} = \lambda_{\max}(\mathbf{W})$, $\rho_{\min} = \lambda_{\min}(\mathbf{W})$. Moreover, $0 < \rho_{\min} \le 1/n$ and $\rho_{\max} \le 1$.

3. Research Question

RCD with probabilities $p_i = \mathbf{A}_{ii}/\mathrm{Tr}(\mathbf{A})$ satisfies: $\rho_{\min} = \lambda_1/\mathrm{Tr}(\mathbf{A})$, where λ_1 is the smallest eigenvalue of **A**. When ρ_{\min} is small, RCD is slow. Can we modify RCD by utilizing some spectral information, if known, so that the rate gets improved?

4. New Algorithm

Let $\mathbf{A} = \sum_{i=1}^{n} \lambda_i u_i u_i^{\mathsf{T}}$ be the eigenvalue decomposition of \mathbf{A} , with $0 < \lambda_1 \le \lambda_2 \le 1$ $\cdots \leq \lambda_n$ being the eigenvalues, and u_1, \ldots, u_n the eigenvectors.

Algorithm 2 [2] (Stochastic Spectral Coordinate Descent).

Parameter: Choose $k \in \{0, \ldots, n-1\}$; set $C_k = k\lambda_{k+1} + \sum_{i=k+1}^n \lambda_i$ Run Algorithm 1 with the following distribution \mathcal{D} :

$$s_t = \begin{cases} e_i & with \ probability \ p_i = \frac{\mathbf{A}_{ii}}{C_k}, \ i = 1, 2, \dots, n \\ u_i & with \ probability \ p_{n+i} = \frac{\lambda_{k+1} - \lambda_i}{C_k}, \ i = 1, 2, \dots, k. \end{cases}$$

Note that for k = 0, Algorithm 2 reduces to RCD.

Theorem 2. For every $n \geq 2$, Algorithm 2 has the rate

$$\rho_{\min} = \frac{\lambda_{k+1}}{C_k}$$

Moreover, the rate improves as k grows, and interpolates between the RCD rate $\lambda_1/\text{Tr}(\mathbf{A})$ for k=0, and the optimal rate 1/n for k=n-1:

$$\frac{\lambda_1}{\operatorname{Tr}(\mathbf{A})} = \frac{\lambda_1}{C_0} \le \dots \le \frac{\lambda_{k+1}}{C_k} \le \dots \le \frac{\lambda_{n-1}}{C_{n-2}} \le \frac{\lambda_n}{C_{n-1}} = \frac{1}{n}.$$

The total work of Algorithm 2 depends on k:

$$Work(\mathcal{D}) := \underbrace{P(\mathcal{D})}_{\text{preprocessing cost}} + \underbrace{C(\mathcal{D})}_{\text{cost of 1 iteration}} \times \underbrace{I(\mathcal{D})}_{\text{number of iterations till ϵ-solution}}$$

k	$P(\mathcal{D})$	$C(\mathcal{D})$	$I(\mathcal{D})$
0	O(n)	O(n)	$\frac{\operatorname{Tr}(\mathbf{A})}{\lambda_1}\ln(1/\epsilon)$
0 < k < n - 1	computation of λ_i for $i=1,2,\ldots,k+1$ computation of u_i for $i=1,2,\ldots,k$	O(n)	$\frac{C_k}{\lambda_{k+1}}\ln(1/\epsilon)$
n-1	computation of λ_i for $i=1,2,\ldots,n$ computation of u_i for $i=1,2,\ldots,n-1$	O(n)	$n \ln(1/\epsilon)$

5. Numerical Experiments

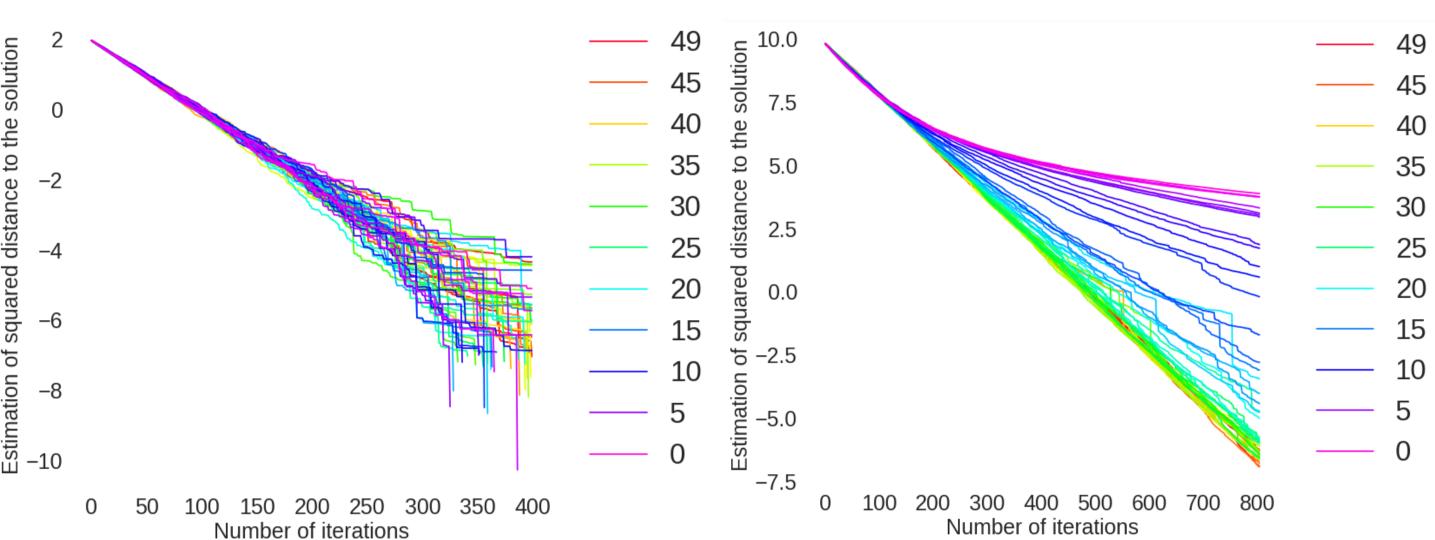


Figure: Eigenvalues were sampled from uniform distribution on [10; 11]; n = 50

Figure: Eigenvalues were sampled from uniform distribution on [0; 100, 000]; n = 50

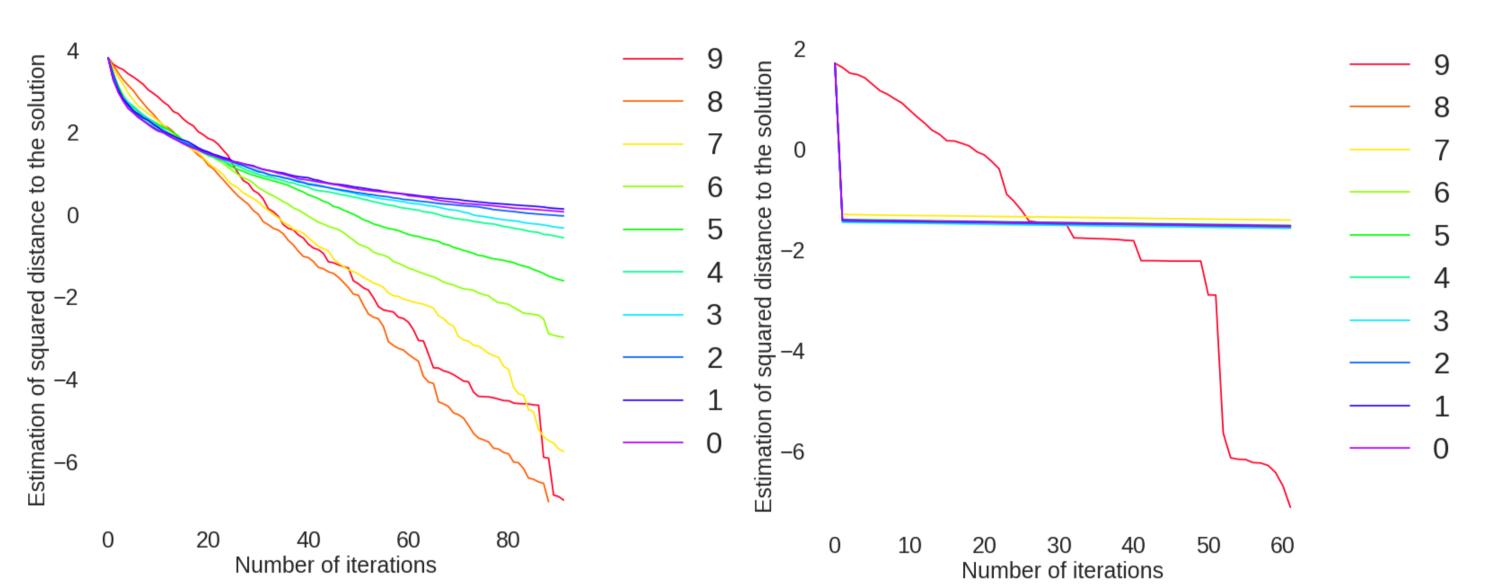


Figure: Eigenvalues decay exponentially; n = 10

Figure: All eigenvalues equal to 1, except for the largest, which is equal to 1,000; n = 10

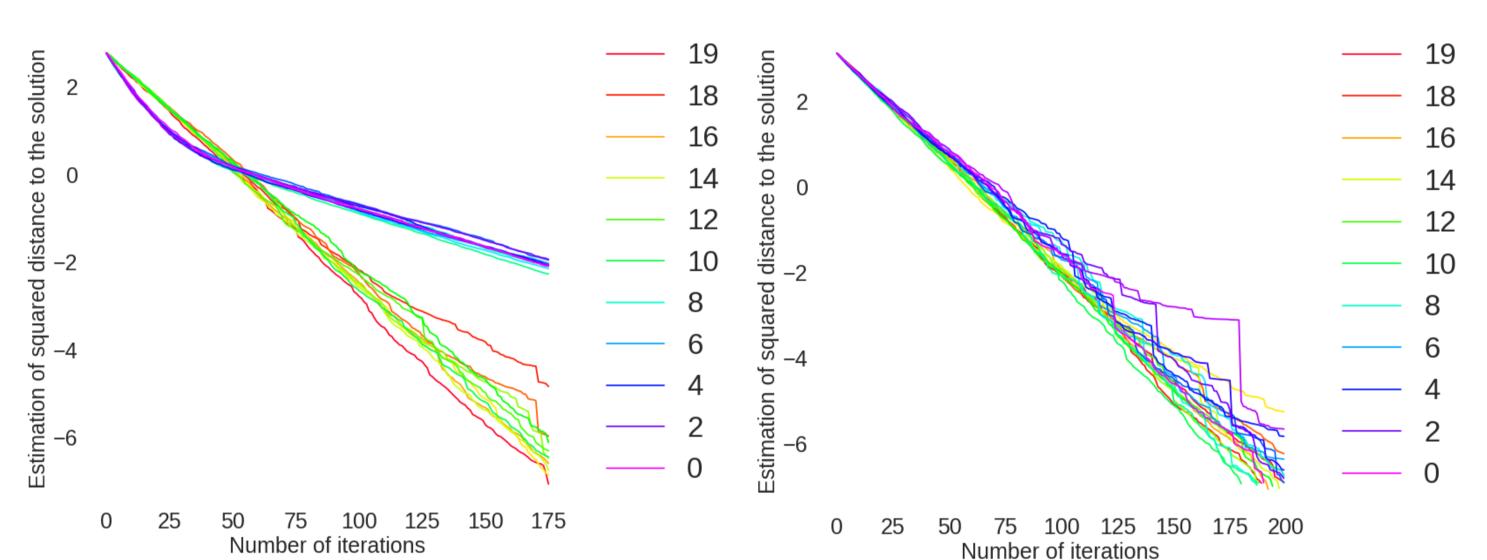


Figure: Half of eigenvalues were sampled from uniform distribution on [10, 11] and half from uniform distribution on [100, 101]; n = 20

Figure: Half of eigenvalues were sampled from uniform distribution on [50, 51] and half from uniform distribution on [100, 101]; n = 20

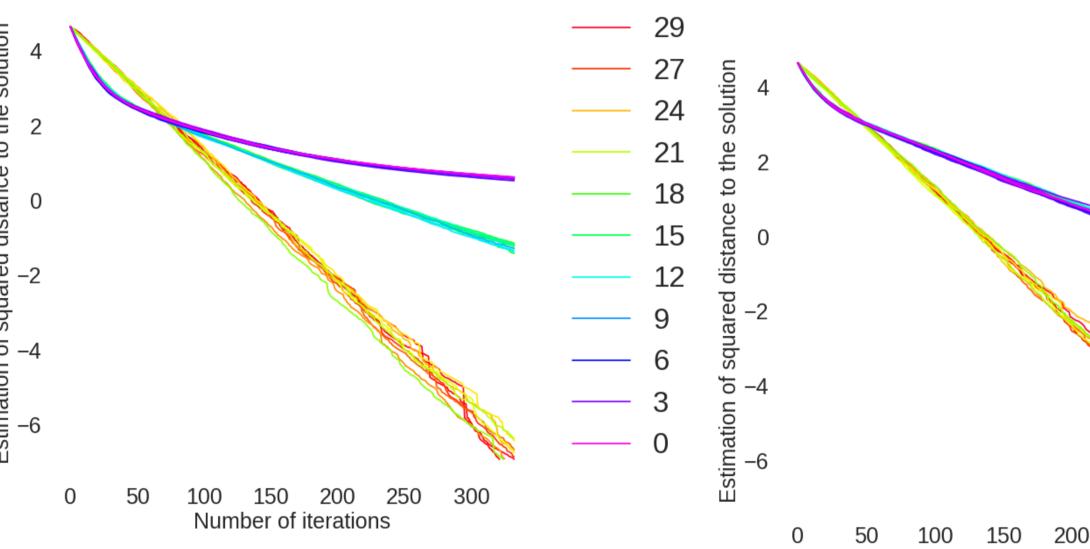


Figure: One third of eigenvalues were sampled from uniform distribution on [10; 11], one third from uniform distribution on [100; 101] and one third from uniform distribution on [1,000;1,001]; n = 30

Figure: Two thirds of eigenvalues were sampled from uniform distribution on [100; 101] and one third from uniform distribution on [1000, 1001]; n = 30

6. Bibliography

- [1] R. M. Gower and P. Richtárik. Randomized iterative methods for linear systems. SIAM Journal on Matrix Analysis and Applications, 36(4):1660-1690, 2015.
- 2 D. Kovalev, E. Gorbunov, E. Gasanov, and P. Richtárik. Stochastic spectral and conjugate descent methods. NIPS 2018.
- [3] P. Richtárik and M. Takáč. Stochastic reformulations of linear systems: Algorithms and convergence theory. arXiv preprint arXiv:1706.01108, 2017.

