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1. Introduction
Consider the following optimization problem

- LT A 2T
min flx) =350 Ax — b x,
where A is an n X n symmetric positive definite matrix. The problem has a
unique solution: x, = A~!'b. We are interested in the case when n is huge
(millions, billions). Note that f is (strongly) convex and quadratic.

2. Algorithm: Stochastic Descent

The state-of-the-art methods for convex optimization in huge dimensions are
randomized coordinate descent (RCD) methods. We now describe a method
which includes RCD as a special case: stochastic descent (SD). SD is a
special case of the sketch-and-project method developed in [1].

/Algorithm 1 [1, 3] (Stochastic Descent).

Parameter: some distribution D over vectors in IRR"
Initialization: Choose ry € R"”
fort=20,1,2... do

Draw a fresh sample s; from D
s;(Aazt—b)S
s} Asy

Tyl < Ty
end for

RCD is obtained as a special case by letting D be a distribution over unit
coordinate (i.e., basis) vectors in R": {ej,e9, - ,e,}:

sy ~ D & s; = e; with probability p; > 0.

‘Theorem 1 (1, 3]. Algorithm 1 converges linearly in expectation as

(1= pmax)'lzo = wlla < Esonlllze — z.l[a) < (1= puin)' w0 — 2[4

~ / /
where [afla = (¢7A2)', W = Eop [AS55A0], g = A W),

Pmin = Amin(W). Moreover, 0 < puin < 1/n and ppax < 1.

3. Research Question

RCD with probabilities p; = A;;/Tr(A) satisfies: ppim = A1/ Tr(A), where )\
is the smallest eigenvalue of A. When pp,, is small, RCD is slow. Can we
modify RCD by utilizing some spectral information, if known, so
that the rate gets improved?

4. New Algorithm

Let A = fj A\iuiu; be the eigenvalue decomposition of A, with 0 < A\ < Ay <
=1

1=
-+ < )\, being the eigenvalues, and uq, . .., u, the eigenvectors.

/Algorithm 2 [2] (Stochastic Spectral Coordinate Descent).

Parameter: Choose k € {0,...,n—1}; set Cp = kX1 + X1 N
Run Algorithm 1 with the following distribution D:

e; with probability p;, = %—Z, 1=1,2,....n

St = | . . L MA
u;  with probability p,.; i 1,2,...,k.

Note that for £ = 0, Algorithm 2 reduces to RCD.

‘Theorem 2. For every n > 2, Algorithm 2 has the rate

gy
Pmin = Oy
Moreover, the rate improves as k grows, and interpolates between the
RCD rate \{/Tr(A) for k =0, and the optimal rate 1/n for k =mn — 1:
Al :ﬁ< LM < An—1 < An
TT(A) CO - - Ck -

The total work of Algorithm 2 depends on k:
Work(D) = P(D) + C(D) X [(D)

~—— ~—— ~——
preprocessing cost  cost of 1 iteration  number of iterations till e-solution
P(D) C(D) I(D)
| O(n) O(n) “*1In(1/e)
eampuaion oo 1= 12 O il
commtation of sty for o 1.2,y O(m)| nln(1/9)
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5. Numerical Experiments
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Figure: Eigenvalues were sampled from
uniform distribution on [0; 100, 000]; n = 50

Figure: Eigenvalues were sampled from
uniform distribution on [10; 11]; n = 50
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Figure: Eigenvalues decay exponentially;
n = 10

Figure: All eigenvalues equal to 1, except for
the largest, which is equal to 1,000; n = 10
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Figure: Half of eigenvalues were sampled from  Figure: Half of eigenvalues were sampled from
uniform distribution on [10, 11} and half from  uniform distribution on [50, 51] and half from
uniform distribution on [100, 101]; n = 20 uniform distribution on [100, 101]; n = 20
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Figure: One third of eigenvalues were sampled Number of iterations

from uniform distribution on [10; 11], one third Figure: Two thirds of eigenvalues were sampled

from uniform distribution on [100;101] and ~ from uniform distribution on [100; 101} and
one third from uniform distribution on one third from uniform distribution on

11,000; 1,001]; n = 30 11000, 1001]; » = 30
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